Perbrominated 2-nitrotetraphenylporphyrins: electrochemical and axial ligation properties

Puttaiah Bhyrappa* and Bhavana Purushothaman

Department of Chemistry, Indian Institute of Technology-Madras, Chennai-600 036, India

Received (in Cambridge, UK) 5th May 2000, Accepted 15th November 2000 First published as an Advance Article on the web 20th December 2000

36, India

A new series of perbrominated 2-nitro-5,10,15,20-tetraphenylporphyrins, $H_2TPPBr_n(NO_2)$ (n = 6 and 7) and their metal (Cu^{II} and Zn^{II}) complexes have been synthesised and characterised. The presence of mixed electron withdrawing (bromo- and nitro-) substituents at the β -pyrrole positions induces interesting electrochemical and axial ligation properties. Perbrominated nitroporphyrins exhibit two successive one electron redox potentials with a positive shift of >100 mV relative to their corresponding octabromotetraphenylporphyrin (MTPPBr₈) complexes. Axial ligation of various nitrogenous bases to $ZnTPPBr_n(NO_2)$ complexes showed facile ligand binding with >50% enhancement in the equilibrium constants, K_{eq} , relative to $ZnTPPBr_8$. Surprisingly, MTPPBr_n(NO_2) complexes show similar axial ligation and electrochemical redox behaviour. The anodic shift in electrochemical redox potentials and enhanced K_{eq} of MTPPBr_n(NO₂) complexes have been attributed to the increased electron deficiency of the porphyrin π -system.

Over the past decade, perhaloporphyrins have aroused considerable interest due to their unusual physical and chemical properties. High-valent metalloperhaloporphyrins serve as catalysts for the oxidative transformation of organic substrates.¹ The stability of metalloporphyrin catalysts has been attributed to both electronic and steric factors.^{1e} There are two classes of metalloperhaloporphyin catalysts; (a) those with electron withdrawing substituents only on the meso-phenyl positions^{2,3} and (b) those with electron withdrawing substituents on both the β -pyrrole and *meso*-phenyl positions.^{4,5} These increase the electron deficiency of the porphyrin macrocycle, and the latter type, in particular, have shown dramatic increases in catalytic activity.4,5 The increased stability of the catalyst towards oxidative degradation is due to the stabilisation of the HOMO of the porphyrin macrocycle by the halogens at the porphyrin periphery.4a,b,1d

Perhaloporphyrins exhibit remarkable electronic, electrochemical redox and stereochemical properties, which make these porphyrins unique.⁶ Furthermore, β -perbromoporphyrins have been employed as precursors in the synthesis of a variety of other substituted porphyrins, incorporating the desired donor–acceptor substituents using Suzuki cross-coupling reactions.⁷ These highly functionalised porphyrins, are otherwise synthetically inaccessible. A large number of reports can be found in the literature on dodeca-substituted porphyrins with similar substituents at the pyrrole carbons.

Synthesis of porphyrins with mixed substituents is of increasing interest, due partly to the differences in their chemical reactivities and also in order to generate unusually substituted porphyrins.8 A variety of porphyrins with mixed (alkyl and bromo) groups at the β -pyrrole positions have been reported by Senge and co-workers⁹ and they exhibit interesting stereochemical features. The degree of non-planarity of the porphyrin ring influences the physico-chemical properties of the porphyrin π -system.¹⁰ Porphyrins with mixed substituents have been largely unexplored. To our knowledge, MTPPBr₇(NO₂) is the first dodeca-substituted asymmetric porphyrin with electron withdrawing hetero substituents at the β -pyrrole positions. We report here the synthesis, electrochemical redox and axial ligation properties of a series of perbrominated 2-nitrotetraphenylporphyrins, 2-nitro-7,8,12,13,17,18-hexa-

Fig. 1 Molecular structure of perbrominated 2-nitrotetraphenyl-porphyrins.

bromo-5,10,15,20-tetraphenylporphyrin, $H_2TPPBr_6(NO_2)$ and 2-nitro-3,7,8,12,13,17,18-heptabromo-5,10,15,20-tetraphenylporphyrin, $H_2TPPBr_7(NO_2)$ and their Zn^{II} and Cu^{II} complexes.

Results and discussion

The porphyrins with mixed substituents at the β -pyrrole positions of the *meso*-tetraphenylporphyrin, MTPPBr_n(NO₂) (n = 6 and 7) (Fig. 1) were synthesised by direct bromination of the complex CuTPP(NO₂) followed by acid demetallation. In addition to the desired products [CuTPPBr_n(NO₂) (n = 6 and 7)], the formation of CuTPPBr₈ was also observed. This is possibly due to nucleophillic substitution^{8,11} of the nitro group by the bromo group. With increasing bromine concentration, there is an increase in the yield of CuTPPBr₈ relative to the CuTPPBr_n(NO₂) complexes. When the ratio of liquid Br₂ to CuTPPBr₈ (55%) and CuTPPBr₇(NO₂) (45%) complexes. Under our optimised conditions, the CuTPPBr_n(NO₂) (n = 6, 7) complexes were generated in good yields.

238 J. Chem. Soc., Perkin Trans. 2, 2001, 238–242

Table 1 UV–Visible absorption spectral data^{*a*} of MTPPBr_{*n*}(NO₂) complexes in toluene at 25 °C

Porphyrin	B (Bands)	Q (Bands)	
H ₂ TPPBr ₈	368(4.30), 471(5.21)	570(3.88), 623(4.05), 740(3.76)	
H ₂ TPPBr ₇ (1	NO ₂) 373(4.31), 474(5.13)	573(3.80), 629(3.93), 747(3.75)	
H ₂ TPPBr ₆ (1	NO_2) 269(4.32), 469(5.17)	570(3.85), 623(4.06), 738(3.75)	
CuTPPBr,	368(4.43), 472(5.11)	585(4.21), 628(3.84)	
CuTPPBr ₇ (1	NO_2 370(4.31), 475(4.98)	589(4.03), 634(3.78)	
CuTPPBr ₆ (1	NO_{2} 365(4.37), 470(5.05)	587(4.12), 633(3.87)	
ZnTPPBr	355(4.50), 472(5.37)	603(4.04), 658(3.99)	
ZnTPPBr _o (1	NO_2 354(4.43), 474(5.34)	607(3.97), 664(4.03)	
ZnTPPBr ₆ (1	NO_2 352(4.31), 471(5.26)	603(3.89), 657(3.91)	

Fig. 2 Electronic absorption spectra of $ZnTPPBr_8$ (heavy line) and $ZnTPPBr_7(NO_2)$ (thin line) in toluene.

The synthesised complexes were characterised by ¹H NMR, UV-Visible and mass spectroscopic methods. Optical absorption spectra of the Zn^{II} -perbrominated porphyrins are shown in Fig. 2. Electronic absorption spectral data of the porphyrin complexes are given in Table 1. MTPPBr_n(NO₂) complexes exhibit similar spectral features to MTPPBr₈ complexes.^{12a} Interestingly, the UV-Visible absorption spectra of MTPP- $Br_7(NO_2)$ (M = 2H, Zn^{II} and Cu^{II}) complexes show red-shifted B and Q bands relative to their corresponding MTPPBr₈ or MTPPBr₆(NO₂) complexes. The Q(0,0) bands in ZnTPPBr_n-(NO₂) complexes show an increase in intensity relative to their Q(1,0) transitions in toluene. According to the four-orbitalmodel,13 the highest occupied molecular orbitals, a1u and a2u, bear electron density at the β -pyrrole carbons and at the mesocarbons and imino nitrogens, respectively. The increase in intensity of Q(0,0)/Q(1,0) in ZnTPPBr_n(NO₂) is possibly due to a further lifting of the degeneracy of the a_{1u} and a_{2u} orbitals by stabilisation of the a_{1u} relative to the a_{2u} orbital, in contrast to that of $ZnTPPBr_8$. The relative intensity Q(0,0)/ Q(1,0) for the perbrominated porphyrins follows the order $ZnTPPBr_{7}(NO_{2}) > ZnTPPBr_{6}(NO_{2}) > ZnTPPBr_{8}$. Synthesised perbrominated 2-nitrotetraphenylporphyrins were found to be non-fluorescent due to the heavy atom effect of the bromine substituents.12a

Fig. 3 Cyclic voltammograms of $ZnTPPBr_7(NO_2)$ in CH_2Cl_2 with TBAHFP as the supporting electrolyte at a scan rate of 100 mV s⁻¹.

The ¹H NMR spectra of MTPPBr₆(NO₂) (M = 2H and Zn^{II}) complexes exhibit proton resonances arising from the β -pyrrole and *meso*-phenyl protons, while those of MTPPBr₇(NO₂) complexes showed no resonances due to β -pyrrole protons. The integrated intensities are in accordance with the proposed structures. The presence of a singlet at 8.70 ppm for the MTPPBr₆(NO₂) complexes indicates that the pyrrole ring with the nitro group is free of bromine substitution. For the MTPPBr₇(NO₂) complexes, the *ortho*-phenyl protons show an asymmetric multiplet, in contrast to their corresponding MTPPBr₈ complexes, indicating the lowered symmetry of the MTPPBr₇(NO₂) complexes.

A wide variety of perhaloporphyrins have been examined in non-aqueous media. 6a,b,j,12 The electrochemical redox properties of a series of perbrominated porphyrins have been examined in CH₂Cl₂ using tetrabutylammonium hexafluorophosphate (TBAHFP) as the supporting electrolyte. The cyclic voltammogram of a representative ZnTPPBr₇(NO₂) complex is shown in Fig. 3. For comparison, MTPPBr₈ complexes were also examined under similar conditions. Table 2 lists the electrochemical redox data of various asymmetric MTPPBr_n(NO₂) complexes. The observed redox potentials for the MTPPBr₈ complexes are in accordance with the reported values.¹² The MTPPBr_n(NO₂) (M = Cu^{II} and 2H) complexes exhibited two successive reduction and two oxidation potentials while the $ZnTPPBr_n(NO_2)$ complexes showed two oxidation and three reduction potentials. The observed behaviour of the ZnTPP- $Br_n(NO_2)$ (n = 6 and 7) complexes is quite similar to that of the $ZnTPPBr_8$ complex.^{12a} Interestingly, the porphyrins with mixed substituents showed >100 mV anodic shift in redox potential relative to their corresponding MTPPBr₈ complexes. This can be attributed to the increased electron deficiency of the

Table 2Half-wave redox potentials" (mV) of MTPPBr $_n(NO_2)$ complexes in CH2Cl2 with 0.1 M TBAHFP at 25 °C

Porphyrin	Oxidation		Reduction		
	I	II	I	II	III
H,TPPBr.	960 <i>^b</i>		-680	-1070	_
H,TPPBr,(NO ₂)	1050	1310	-580 ^b	-950	
H ₂ TPPBr ₆ (NO ₂)	1055	1290	-650 ^b	-955	_
CuTPPBr.	910	1510	-865	-1090	
CuTPPBr ₇ (NO ₂)	1040	1545	-720	-925	
CuTPPBr ₆ (NO ₂)	1060		-725	-970	
ZnTPPBr	880	1140	-935 ^b	-1085	-1335
ZnTPPBr _z (NO ₂)	955	1240	-740 ^{<i>b</i>}	-945	-1180
$ZnTPPBr_6(NO_2)$	955	1220	-750 ^b	-960	-1215

^a vs. saturated calomel electrode. ^b Irreversible potentials.

Fig. 4 Titration data is shown for the ligation of pyridine to the $ZnTPPBr_7(NO_2)$ complex in toluene. The main plot shows the electronic spectral change in the Soret region of the $ZnTPPBr_7(NO_2)$ complex on increasing addition of pyridine. The inset shows the plot of pyridine concentration, [pyridine] *vs.* [pyridine] divided by the change in absorbance at 474 nm.

porphyrin macrocycle of the MTPPBr_n(NO₂) complexes. For the MTPPBr_n(NO₂) (M = Cu^{II}, Zn^{II}) complexes, with an increase in electronegativity of the core metal ion a positive shift in redox potential was observed, as anticipated. It is of interest to note that the MTPPBr_n(NO₂) (n = 6, 7) complexes showed similar redox potentials.

Ligation of nitrogenous bases to $ZnTPPBr_n(NO_2)$ complexes was performed to delineate the effect of mixed bromoand nitro-substituents on the basicity of the Zn^{II} centre. Different bases were employed to probe the effect of basicity on the K_{eq} values. Optical absorption spectra of the ZnTPP- $Br_7(NO_2)$ complex on successive additions of pyridine in toluene are shown in Fig. 4. On ligation of bases to Zn^{II} perbrominated porphyrins, the $ZnTPPBr_n(NO_2)$ complexes show a red-shifted Soret and the visible bands, as in the case of $ZnTPP.^{14}$ The stoichiometry of the complexation between the Zn^{II} porphyrin and the ligand (L) were analysed using the Hill method ¹⁵ and in all cases the stoichiometry of the ligand binding to porphyrin was found to be one-to-one complexation [eqn. (1)].

$$[ZnTPPBr_n(NO_2)] + [L] \stackrel{\Lambda_{eq}}{\longrightarrow} [ZnTPPBr_n(NO_2)(L)] \quad (1)$$

For comparison with the representative plot for the ligation of pyridine¹⁶ with ZnTPPBr₇(NO₂) (shown in Fig. 4), the ligation of bases with ZnTPPBr₈ was also performed under similar conditions; these data¹⁷ are presented in Table 3. It can be seen that the ZnTPPBr₈(NO₂) complexes have >50% higher

Fig. 5 A plot is given for $\log K_{eq}$ of ZnTPPBr₇(NO₂)/base against the corresponding pK_a values of the bases. The designated numbers for the bases are as given in Table 3.

 K_{eq} , relative to the ZnTPPBr₈ complex. The ZnTPPBr₇(NO₂) and ZnTPPBr₆(NO₂) complexes show quite similar K_{eq} values. The plot of log K_{eq} of ZnTPPBr₇(NO₂) against the p K_a values for the various bases is shown in Fig. 5. The log K_{eq} values follow a fairly good linear relationship with the pK_a values. Interestingly, the additional bromo group in ZnTPPBr₇(NO₂) has no significant influence over the K_{eq} value.

In summary, a new class of asymmetric β -perbrominated 2-nitrotetraphenylporphyrins with mixed substituents have been synthesised and characterised. MTPPBr_n(NO₂) complexes showed anodic shifts in electrochemical redox potentials and enhanced K_{eq} values relative to MTPPBr₈ complexes. This is interpreted in terms of an enhanced electron deficiency of the MTPPBr_n(NO₂) complexes due to the introduction of a nitro group that is in direct conjugation with the porphyrin π -system.

Experimental

The majority of the solvents employed in this study were of reagent grade and were distilled before use. Toluene (Ranbaxy labs, India) was refluxed and distilled from sodium. CH_2Cl_2 (Qualigens, India) was refluxed and distilled over CaH_2 . Liquid bromine, purchased from E. Merck, was used as received. Metal carriers, $Zn(OAc)_2 \cdot 2H_2O$ and $Cu(OAc)_2 \cdot H_2O$ were purchased from Ranbaxy labs (India) and used without further purification. Silica gel (60–120) was purchased from Acmes (India) and used as received. The nitrogenous bases, pyridine, 3-hydroxypyridine, imidazole and piperidine were procured from Fluka (Switzerland) and used without further purification.

Syntheses

MTPPBr_{*n*}(**NO**₂) **complexes.** 2-Nitro-5,10,15,20-tetraphenylporphinatocopper(II), CuTPP(NO₂) was synthesised using a reported procedure.¹⁸ Perbrominated H₂TPPBr_{*n*}(NO₂) (n = 6, 7) complexes were synthesised by bromination of CuTPP(NO₂) with liquid bromine followed by demetallation. A 250 cm³ conical flask, equipped with a magnetic stir bar, was charged with CuTPP(NO₂) (0.33 g, 0.44 mmol) in CHCl₃ (70 ml) at room temperature. To this solution, liquid Br₂ (4.36 g, 26 mmol)

Table 3 Equilibrium constants $(K_{eq})^a$ for the ligation of various nitrogenous bases and DMSO with Zn^{II}-perbrominated porphyrins in toluene at 25 °C

	$10^{-3}K_{eq}/M^{-1}$			
Base	ZnTPPBr ₈	ZnTPPBr ₇ (NO ₂)	ZnTPPBr ₆ (NO ₂)	pK _a ^b
 1. Piperidine	1003.77	1598.52	1598.86	11.22
2. Cyclohexylamine	192.79	320.23	301.04	10.66
3. 4-Dimethylaminopyridine	135.17	181.32	158.87	9.70
4. Morpholine	182.08	261.22	263.27	8.33
5. N-Methylimidazole	138.71	186.39	187.44	7.33
6. Imidazole	113.30	169.85	184.72	6.95
7. Pyridine	29.57	45.89	47.58	5.23
8. 3-Hydroxypyridine	39.02	64.21	62.02	4.86
9. DMSO	9.06	14.22	14.15	

in CHCl₃ (30 ml) was added dropwise over a period of 20 min. After complete addition of bromine, the reaction mixture was stirred for 4 h at room temperature. At the end of 4 h, pyridine (4.0 ml) in CHCl₃ (40 ml) was added dropwise over a period of 30 min. Then the reaction mixture was allowed to stir for a further 6 h and then treated with 100 ml of aqueous sodium metabisulfite solution (25%) followed by 150 ml of aqueous HCl (20%). The organic layer was separated and dried over anhydrous Na2SO4. The crude product mixture was concentrated to a minimum volume and purified by column chromatography on silica gel with CHCl₃ as the eluant. The yield of the product was found to be 0.38 g (65%). The separation of the individual components CuTPPBr₈, and $CuTPPBr_n(NO_2)$ (n = 6, 7) was unsuccessful on silica or alumina columns due to the poor solubility of the product mixture in low polarity solvents. However, the separation the of mixture was effected by preparation of the Zn^{II} complexes.

The acid demetallation of perbrominated porphyrins was performed using conc. H_2SO_4 . In a typical reaction, the Cu^{II} complex (0.10 g, 0.08 mmol) was dissolved in CHCl₃ (40 ml), and to this conc. H₂SO₄ (3 ml) was added. The reaction mixture was stirred for a period of 30 min, then washed with distilled water $(2 \times 100 \text{ ml})$ and the non-aqueous layer was neutralised with saturated aqueous NaHCO3 solution. The organic solution was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure using a rotary evaporator. Yield of the free base product was found to be 0.085 g (90%). The Zn^{II} insertion into the free base perbrominated porphyrins was carried out using the procedure employed for Cu^{II} insertion as described below and the yield of the product was almost quantitative. The individual Zn^{II} complexes of H₂TPPBr₈ and H_2 TPPBr_n(NO₂) (n = 6,7) were separated on a silica gel column using toluene as the eluant. The ZnTPPBr₈ complex was eluted first followed by the ZnTPPBr₂(NO₂) and ZnTPPBr₆(NO₂) complexes. Yields of the individual fractions were found to be ZnTPPBr₈ (40%), ZnTPPBr₇(NO₂), (30%) and ZnTPP-Br₆(NO₂) (30%).

 $H_2TPPBr_n(NO_2)$ complexes. These complexes were prepared by demetallation of their Zn^{II} complexes using conc. HCl. In a typical demetallation reaction, ZnTPPBr₇(NO₂) (0.060 g, 0.05 mmol) was dissolved in 20 ml of CHCl₃. To this, 3 ml of conc. HCl (33%) was added with stirring for 15 min. the reaction mixture was then washed with distilled water (3 × 50 ml). The non-aqueous layer was neutralised with aqueous NaHCO₃ (15%) solution and dried over anhydrous Na₂SO₄. The yield of the porphyrin was found to be 0.055 g (90%).

CuTPPBr_n(NO₂) complexes. The metal ion insertion was performed in a CHCl₃-CH₃OH solvent mixture using Cu^{II} acetate monohydrate as metal carrier. A round-bottomed flask (100 cm³) was charged with H₂TPPBr₇(NO₂) (0.075 g,

0.06 mmol) in CHCl₃ (25 ml). Cu^{II} acetate monohydrate (0.050 g, 0.22 mmol) in 3 ml of methanol was added and the solution was stirred at room temperature for 20 min. The solvent was then removed under reduced pressure and the crude material purified by silica gel column chromatography using CHCl₃ as the eluant. The yield of the porphyrin was almost quantitative.

Spectra

The synthesised free base perbrominated porphyrins and their metal complexes were characterised by ¹H NMR, UV–Visible, elemental and mass spectroscopic techniques. ZnTPPBr₈: $\delta_{\rm H}$ (400 MHz, CDCl₃, TMS) 8.10 (m, 8H, aromatic H_o), 7.56 (m, 12H, aromatic H_{m,p}). FAB mass spectrum (*m*/*z*): 1308 (M⁺, 100%), 1230 (M⁺ – Br, 8%). The observed data are similar to those reported for ZnTPPBr₈.^{12a}

MTPPBr₆(**NO**₂) (**M** = 2**H**, **Zn**^{II}) complexes. H₂TPPBr₆(NO₂): $\delta_{\rm H}$ (400 MHz, CDCl₃, TMS) 8.71 (s, 1H, β-H), 8.21 (m, 8H, aromatic H_o), 7.70 (m, 12H, aromatic H_{m,p}), -1.50 (br s, 2H, NH) (Found: C, 46.35; H, 2.16; N, 6.10. C₄₄H₂₃N₅O₂Br₆ requires C, 46.86; H, 2.06; N, 6.21%). ZnTPPBr₆(NO₂): $\delta_{\rm H}$ (400 MHz, CDCl₃, TMS) 8.65 (s, 1H, β-H), 8.10 (m, 8H, aromatic H_o), 7.50 (m, 12H, aromatic H_{m,p}). FAB mass spectrum (*m*/*z*): 1197.0 [(M + H)⁺, 100%], 1116.9 [(M + H)⁺ - Br, 12%].

MTPPBr₇(NO₂) (**M** = 2**H**, **Zn^{II}**) complexes. H₂TPPBr₇-(NO₂): $\delta_{\rm H}$ (400 MHz, CDCl₃, TMS) 8.18 (m, 8H, aromatic H_o), 7.75 (m, 12H, aromatic H_{m,p}), -1.45 (br s, 2H, NH) (Found: C, 43.40; H, 1.91; N, 5.90. C₄₄H₂₂N₅O₂Br₇ requires C, 43.60; H, 1.83; N, 5.78%). FAB mass spectrum (*m*/*z*): 1213.6 [(M + H)⁺, 100%]. ZnTPPBr₇(NO₂): $\delta_{\rm H}$ (400 MHz, CDCl₃, TMS) 8.12 (m, 8H, aromatic H_o), 7.73 (m, 12H, aromatic H_{m,p}). FAB mass spectrum (*m*/*z*): 1275.0 [(M + H)⁺, 100], 1196.9 [(M + H)⁺ – Br, 11%].

Instrumentation

Electronic absorption spectra of free base porphyrins and their metal derivatives were recorded on a JASCO V-550 model UV– Visible absorption spectrophotometer using 1 cm path length quartz cells in toluene. ¹H NMR spectra of porphyrins were recorded on a 400 MHz FT-NMR spectrometer in CDCl₃ with tetramethylsilane as the internal standard. Cyclic voltammetric measurements of free base performed on a BAS-100 Bioanalytical system provided with a monitor and XY recorder. The electrochemical cell consists of a three-electrode cell assembly; a platinum-button-working electrode, a saturated calomel reference, SCE, and a platinum wire as the auxiliary electrode. The reference electrode, SCE was separated from the bulk solution by a glassy diaphragm connected to a bridge filled with the supporting electrolyte. The concentrations of the porphyrins employed were ~1 mM. All measurements were performed at 25 °C in CH_2Cl_2 under N₂ atmosphere using 0.1 M TBAHFP as the supporting electrolyte.

The ligation of various nitrogenous bases with the Zn^{II} perbrominated porphyrins was performed at 25 °C in toluene using a thermostat cell holder and the equilibrium constants, K_{eq} , were evaluated using reported procedure.^{16b} K_{eq} were analysed ^{16b} at four different wavelengths and are found to be similar within the experimental error (6%). For a given base, three K_{eq} values were evaluated and average of three K_{eq} values has been taken for data analysis.

Acknowledgements

We are thankful to the Department of Science and Technology, DST (SP/S1/F09/98) and Council of Scientific and Industrial Research, CSIR (01(1550)/98/EMR-II), India for financial support. We thank Professor V. Krishnan (IISc, Bangalore) for providing the facilities to carry out electrochemical studies.

References

- (a) D. Dolphin, T. G. Traylor and L. Y. Xie, Acc. Chem. Res., 1997, 30, 251; (b) J. E. Lyons and P. E. Lyons, Jr., in Metalloporphyrins in Catalytic Oxidations, ed. R. A. Sheldon, Marcel Dekker, New York, 1994; (c) B. Meunier, Chem. Rev., 1992, 92, 1411; (d) P. E. Ellis, Jr. and J. E. Lyons, Coord. Chem. Rev., 1990, 105, 181; (e) D. Ostovic and T. C. Bruice, Acc. Chem. Res., 1992, 25, 314; (f) D. Mansuy, The Activation of Dioxygen and Homogeneous Catalytic Oxidation, Plenum Press, New York and London, 1993, 347; (g) K. S. Suslick, in Comprehensive Supramolecular Chemistry, Pergamon Press, 1995, vol. 5.
- 2 (a) T. G. Traylor, Y. S. Byun, P. S. Traylor, P. Battioni and D. Mansuy, J. Am. Chem. Soc., 1991, 113, 7821; (b) P. Battioni, J. F. Bortok, D. Mansuy, Y. S. Byun and T. G. Traylor, J. Chem. Soc., Chem. Commun., 1992, 105.
- 3 (a) D. Mansuy, *Pure Appl. Chem.*, 1987, **59**, 759; (b) T. Mashiko, D. Dolphin, J. Nakano and T. G. Traylor, *J. Am. Chem. Soc.*, 1985, **107**, 3735; (c) P. S. Traylor, D. Dolphin and T. G. Traylor, *J. Chem. Soc.*, *Chem. Commun.*, 1984, 279.
- 4 (a) T. G. Traylor and S. Tsuchiya, *Inorg. Chem.*, 1987, 26, 1338; (b) M. N. Carrier, C. Scheer, P. Gouvine, J. F. Bartoli, P. Battioni and D. Mansuy, *Tetrahedron Lett.*, 1990, 31, 6645; (c) M. W. Grinstaff, M. G. Hill, J. A. Labinger and H. B. Gray, *Science*, 1994, 264, 1311.
- S. Tsuchiya and P. Seno, Chem. Lett., 1989, 263; (b) P. Battioni,
 O. Brigaud, H. Desvaux, D. Mansuy and T. G. Traylor, Tetrahedron Lett., 1991, **32**, 2893; (c) P. Hoffman, G. Labat, A. Robert and
 B. Meunier, Tetrahedron Lett., 1990, **31**, 1991; (d) I. Artaud,
 H. Grennberg and D. Mansuy, J. Chem. Soc., Chem. Commun., 1992, 1036; (e) J. F. Bartoli, O. Brigaud, P. Battioni and D. Mansuy, J. Chem. Soc., Chem. Commun., 1991, 440.
- 6 (a) A. Giraudeau, H. J. Callot and M. Gross, *Inorg. Chem.*, 1979, 18, 201; (b) T. P. Wijesekera, A. Matsumoto, D. Dolphin and D. Lexa, *Angew. Chem., Int. Ed. Engl.*, 1990, 29, 1028; (c) D. Mandon, P. Ochsenbein, J. Fischer, R. Weiss, K. Jayaraj, R. N. Austin, A. Gold, P. S. White, O. Brigaud, P. Battioni and D. Mansuy, *Inorg. Chem.*, 1993, 31, 2044; (d) P. Bhyrappa, M. Nethaji and V. Krishnan, *Chem. Lett.*, 1993, 869; (e) M. Ravikanth and

- T. K. Chandrashekar, Struct. Bonding (Berlin), 1995, 82, 105;
 (f) E. R. Birnbaum, J. A. Hodge, W. P. Schaefer, L. Henling, J. A. Labinger, J. E. Bercaw and H. B. Gray, Inorg. Chem., 1995, 34, 3625;
 (g) M. W. Grinstaff, M. G. Hill, E. R. Birnbaum, W. P. Schaefer, J. A. Labinger and H. B. Gray, Inorg. Chem., 1995, 34, 4896;
 (h) T. P. Wijesekara, D. Dupre, M. S. R. Cader and D. Dolphin, Bull. Chim. Soc. Fr., 1996, 133, 765;
 (i) M. S. Chorghade, D. Dolphin, D. Dupre, D. R. Hill, E. C. Lee and T. P. Wijesekara, Synthesis, 1996, 1320;
 (j) K. M. Kadish, J. Li, E. V. Camelbecke, Z. Ou, N. Guo, M. Autret, F. D'Souza and P. Tagliatesta, Inorg. Chem., 1997, 36, 6292.
- K. S. Chan, X. Zhou, B.-S. Lou and T. C. W. Mak, J. Chem. Soc., Chem. Commun., 1994, 271; K. S. Chan, X. Zhou, M. T. Au and C. Y. Tam, Tetrahedron, 1995, 51, 3129; X. Zhou, Z. Y. Zhou, T. C. W. Mak and K. S. Chan, J. Chem. Soc., Perkin Trans. 1, 1994, 2519; S. G. DiMagno, V. S.-Y. Lin and M. J. Therein, J. Am. Chem. Soc., 1993, 115, 2513; S. G. DiMagno, V. S.-Y. Lin and M. J. Therein, J. Org. Chem., 1993, 58, 5983; S. G. DiMagno and M. J. Therein, Science, 1994, 264, 1105.
- 8 L. Jaquinod, C. Gros, R. G. Khoury and K. M. Smith, *Chem. Commun.*, 1998, 2581; K. M. Shea, L. Jaquinoid, R. G. Khoury and K. M. Smith, *Chem. Commun.*, 1998, 759; C. M. Muzzi, C. J. Medforth, K. M. Smith, S.-L. Jia and J. A. Shelnutt, *Chem. Commun.*, 2000, 131.
- 9 M. O. Senge, V. Gerstung, K. Ruhlandt-Senge, S. Runge and I. Lehmann, J. Chem. Soc., Dalton Trans., 1998, 4187.
- P. Ochsenbein, D. Mandon, J. Fischer, R. Weiss, R. Austin, K. Jayaraj, A. Gold, J. Terner, E. Bill, M. Muther and A. X. Trautwein, *Angew. Chem., Int. Ed. Engl.*, 1993, **32**, 1437; P. Ochensenbein, K. Ayougou, D. Mandon, J. Fischer, R. Weiss, R. Austin, K. Jayaraj, A. Gold, J. Terner and J. E. Fajer, *Angew. Chem., Int. Ed. Engl.*, 1994, **33**, 348.
- 11 M. J. Crossley and L. G. King, J. Org. Chem., 1993, 53, 4370; M. J. Crossley, M. M. Harding and C. W. Tansey, J. Org. Chem., 1994, 59, 4433.
- 12 (a) P. Bhyrappa and V. Krishnan, *Inorg. Chem.*, 1991, **30**, 239;
 (b) F. D'Souza, M. Z. Zandler, P. Tagliasta, Z. Ou, J. Shao, E. V. Caemelbecke and K. M. Kadish, *Inorg. Chem.*, 1998, **37**, 4567.
- 13 M. Gouterman, in *The Porphyrins*, ed. D. Dolphin, Academic Press, New York, 1978, vol. 3.
- M. Nappa and J. S. Valentine, J. Am. Chem. Soc., 1952, 100, 5075;
 J. R. Miller and G. D. Dorough, J. Am. Chem. Soc., 1952, 74, 1277;
 G. C. Vogel and L. A. Searby, Inorg. Chem., 1973, 12, 936;
 C. H. Kirksey, P. Hambright and C. B. Storm, Inorg. Chem., 1969, 8, 2141.
- 15 A. V. Hill, J. Physiol. London, 1910, 40, IV; C. A. Hunter, M. N. Meah and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5773.
- 16 (a) ΔA is the difference in absorbance between an unbound and a bound Zn^{II} porphyrin for a given concentration of pyridine, [pyridine], at a particular wavelength. The binding constants were evaluated using the standard procedure: (b) J. P. Collman, J. I. Brauman, K. M. Doxsee, T. R. Halbert, S. E. Hayes and K. S. Suslick, J. Am. Chem. Soc., 1978, 100, 2761; K. S. Suslick, M. M. Fox and T. Reinert, J. Am. Chem. Soc., 1984, 106, 4522; P. Bhyrappa, G. Vaijayanthimala and K. S. Suslick, J. Am. Chem. Soc., 1999, 121, 262.
- 17 For comparison, the K_{eq} values determined for ZnTPPBr₈/bases were similar to those reported in toluene: P. Bhyrappa, V. Krishnan and M. Nethaji, J. Chem. Soc., Dalton Trans., 1993, 1901.
- 18 A. Giraudeau, H. J. Callot, J. Jordan, I. Ezhar and M. Gross, J. Am. Chem. Soc., 1979, 101, 3857.
- 19 A. Albert, in *Physical Methods in Heterocyclic Chemistry*, vol. 1, ed. A. R. Katritzky, Academic Press, New York, 1963, ch. 1.